USN

Fourth Semester B.E. Degree Examination, December 2012

Engineering Mathematics - IV

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Using the Taylor's series method, solve the initial value problem $\frac{dy}{dx} = x^2y 1$, y(0) = 1 at the point x = 0.1 (06 Marks)
 - b. Employ the fourth order Runge-Kutta method to solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0) = 1 at the points x = 0.2 and x = 0.4. Take h = 0.2.
 - c. Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773, y(0.3) = 1.5049. Find y(0.4) using the Milne's predictor-corrector method. Apply the corrector formula twice. (07 Marks)
- 2 a. Employing the Picard's method, obtain the second order approximate solution of the following problem at x = 0.2.

$$\frac{dy}{dx} = x + yz$$
, $\frac{dz}{dx} = y + zx$, $y(0) = 1$, $z(0) = -1$. (06 Marks)

- b. Using the Runge-Kutta method, find the solution at x = 0.1 of the differential equation $\frac{d^2y}{dx^2} x^2 \frac{dy}{dx} 2xy = 1 \text{ under the conditions } y(0) = 1, y'(0) = 0. \text{ Take step length } h = 0.1.$
- c. Using the Milne's method, obtain an approximate solution at the point x = 0.4 of the problem $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} 6y = 0$, y(0) = 1, y'(0) = 0.1. Given that y(0.1) = 1.03995, y(0.2) = 1.138036, y(0.3) = 1.29865, y'(0.1) = 0.6955, y'(0.2) = 1.258, y'(0.3) = 1.873.
- 3 a. If f(z) = u + iv is an analytic function, then prove that $\left(\frac{\partial}{\partial x} |f(z)|\right)^2 + \left(\frac{\partial}{\partial y} |f(z)|\right)^2 = |f'(z)|^2$.

 (06 Marks)
 - b. Find an analytic function whose imaginary part is $v = e^x \{(x^2 y^2)\cos y 2xy\sin y\}$.

c. If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy the equation $\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = 0.$ (07 Marks)

- 4 a. Find the bilinear transformation that maps the points 1, i, -1 onto the points i, 0, -i respectively. (06 Marks)
 - b. Discuss the transformation $W = e^z$. (07 Marks)
 - c. Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle |z| = 3. (07 Marks)

- $\frac{\mathbf{PART} \mathbf{B}}{\mathbf{Express the polynomial}}$ Express the polynomial $2x^3 x^2 3x + 2$ in terms of Legendre polynomials. 5 (06 Marks)
 - b. Obtain the series solution of Bessel's differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 n^2)y = 0$ in the form $y = A J_n(x) + B J_{-n}(x)$. (07 Marks)
 - Derive Rodrique's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$. (07 Marks)
- 6 State the axioms of probability. For any two events A and B, prove that $P(A \cup B) = P(A) + P(B) - P(A \cap B).$ (06 Marks)
 - b. A bag contains 10 white balls and 3 red balls while another bag contains 3 white balls and 5 red balls. Two balls are drawn at ransom from the first bag and put in the second bag and then a ball is drawn at random from the second bag. What is the probability that it is a white ball? (07 Marks)
 - In a bolt factory there are four machines A, B, C, D manufacturing respectively 20%, 15%, 25% 40% of the total production. Out of these 5%, 4%, 3% and 2% respectively are defective. A bolt is drawn at random from the production and is found to be defective. Find the probability that it was manufactured by A or D.
- 7 The probability distribution of a finite random variable X is given by the following table:

Xi	-2	-1	0	1	2	3
$p(x_i)$	0.1	k	0.2	2k	0.3	k

Determine the value of k and find the mean, variance and standard deviation. (06 Marks)

- b. The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are selected, find the probability that (i) exactly 2 will be defective, (ii) at least 2 will be defective, (iii) none will be defective.
- c. In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation, given that A(0.5) = 0.19 and A(1.4) = 0.42, where A(z) is the area under the standard normal curve from 0 to z > 0.
- A biased coin is tossed 500 times and head turns up 120 times. Find the 95% confidence 8 limits for the proportion of heads turning up in infinitely many tosses. (Given that $z_c = 1.96$)
 - b. A certain stimulus administered to each of 12 patients resulted in the following change in blood pressure:

Can it be concluded that, on the whole, the stimulus will change the blood pressure. Use $t_{0.05}(11) = 2.201.$

c. A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table:

X	1	2	3	4	5	6
Frequency	15	6	4	7	11	17

Test the hypothesis that the die is unbiased.

(Given that
$$\chi_{0.05}^2(5) = 11.07$$
 and $\chi_{0.01}^2(5) = 15.09$) (07 Marks)